AssetSheLLM.pro leverages Asset Administration Shell (AAS) and Large Language Models (LLMs) to create solutions that enable seamless interaction with machines. Talk to your Assets like you talk to a human.
Contact us:
AssetSheLLMpro@gmail.com
// Local Agentic LLM utilizing AAS to control IoT devices and display data in AR
const llama = require('llama-agents');
// Example AAS data structure
const AAS = {
devices: {
"sensor2": { type: "TemperatureSensor", temperature: "22°C", location: { x: 10, y: 20, z: 5 } }
}
};
class AgenticLLM {
constructor(aas) {
this.aas = aas;
}
handleQuery(query) {
const [_, deviceId] = query.match(/sensor (\d+)/) || [];
if (deviceId) {
const deviceData = this.aas.devices[`sensor${deviceId}`];
if (deviceData) {
return deviceData;
}
return "Device not found";
}
return "Invalid query";
}
}
const llm = new AgenticLLM(AAS);
const response = llm.handleQuery("hey machine, what is your temperature on sensor 12?");
console.log(response); // Output: { temperature: '22°C', relative_location: { x: 10, y: 20, z: 5 }, live_location_stream_endpoint: "https://localhost:3333/webrtc/machine1/sensor2" }